Modelos animales de adicción a las drogas

María Pilar García Pardo, Concepción Roger Sánchez, José Enrique De la Rubia Ortí, María Asunción Aguilar Calpe

Resumen


El desarrollo de modelos animales de refuerzo y adicción a las drogas es imprescindible para el avance en el conocimiento de las bases biológicas de este trastorno y la identificación de nuevas dianas terapéuticas. En función del componente del refuerzo que deseemos estudiar podemos servirnos de un tipo de modelos animales u otros. Podemos utilizar modelos de refuerzo basados en el efecto hedónico primario que produce el consumo de la sustancia adictiva, como los modelos de autoadministración (AA) y autoestimulación eléctrica intracraneal (AEIC), o modelos basados en el componente relacionado con el aprendizaje asociativo y la capacidad cognitiva de realizar predicciones sobre la obtención del refuerzo en el futuro, como el modelo de condicionamiento de preferencia de lugar (CPL). En los últimos años los modelos han incorporado modificaciones metodológicas para incluir el estudio de los procesos de extinción, reinstauración y reconsolidación o para modelar aspectos concretos de la conducta adictiva como puede ser la motivación para consumir la droga, el consumo compulsivo o la búsqueda de la droga bajo situaciones de castigo. Otros modelos interrelacionan diferentes componentes del refuerzo o modelan la motivación voluntaria por consumir (modelos de “two-bottle choice” o “drinking in the dark”). En definitiva, las innovaciones en estos modelos contribuyen al avance en el conocimiento científico de los diferentes factores que llevan a tomar una droga y a desarrollar un consumo compulsivo, ofreciendo una vía para identificar futuros tratamientos para la adicción.

Palabras clave


Refuerzo; Adicción; Modelos animales; Drogas de abuso

Texto completo:

PDF PDF (English)

Referencias


Aguilar, M.A., Rodríguez-Arias, M. y Miñarro, J. (2009). Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Research Reviews, 59, 253-277. doi:10.1016/j.brainresrev.2008.08.002.

Aguilar, M.A., Roger-Sánchez, C., Rodríguez-Arias, M. y Miñarro, J. (2015). Cocaine enhances the conditioned rewarding effects of MDMA in adolescent mice. Brain Research Bulletin, 113, 27-33. doi:10.1016/j.brainresbull.2015.02.005.

Ahmed, S.H. (2014). A redescription of data does not count as a general theory. Psychopharmacology, 231, 3909. doi:10.1007/s00213-014-3622-2.

Ahmed, S.H., Guillem, K. y Vandaele, Y. (2013). Sugar addiction: pushing the drug-sugar analogy to the limit. Current Opinion in Clinical Nutrition y Metabolic Care, 16, 434-439.  doi:10.1097/MCO.0b013e328361c8b8.

Alberini, C.M. (2011). The role of reconsolidation and the dynamic process of long-term memory formation and storage. Frontiers in Behavioral Neuroscience, 5, 12. doi:10.3389/fnbeh.2011.00012.

Bahi, A. (2012). The selective metabotropic glutamate receptor 7 allosteric agonist AMN082 prevents reinstatement of extinguished ethanol-induced conditioned place preference in mice. Pharmacology Biochemistry and Behavior101, 193-200. doi:10.3389/fnbeh.2011.00012.

Bahi, A. (2013a). Increased anxiety, voluntary alcohol consumption and ethanol-induced place preference in mice following chronic psychosocial stress. Stress16, 441-451.  doi:10.3109/10253890.2012.754419.

Bahi, A. (2013b). Viral-mediated knockdown of mGluR7 in the nucleus accumbens mediates excessive alcohol drinking and increased ethanol-elicited conditioned place preference in rats. Neuropsychopharmacology38, 2109-2119.  doi:10.1038/npp.2012.122.

Barak, S., Carnicella, S., Yowell, Q.V. y Ron, D. (2011). Glial cell line-derived neurotrophic factor reverses alcohol-induced allostasis of the mesolimbic dopaminergic system: implications for alcohol reward and seeking. The Journal of Neuroscience31, 9885-9894. doi:10.1523/JNEUROSCI.1750-11.2011.

Bardo, M.T. y Bevins, R.A. (2000). Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology, 153, 31-43.

Bauer, C.T., Banks, M.L., Blough, B.E. y Negus, S.S. (2013). Rate-dependent effects of monoamine releasers on intracranial self-stimulation in rats: implications for abuse liability assessment. Behavioural Pharmacology, 24, 448. doi:10.1097/FBP.0b013e328363d1a4.

Belin, D. y Deroche-Gamonet, V. (2012). Responses to novelty and vulnerability to cocaine addiction: contribution of a multi-symptomatic animal model. Cold Spring Harbor Perspectives in Medicine, 2, a011940. doi:10.1101/cshperspect.a011940.

Belin, D., Balado, E., Piazza, P.V. y Deroche-Gamonet, V. (2009). Pattern of intake and drug craving predict the development of cocaine addiction-like behavior in rats. Biological Psychiatry, 65, 863-868. doi:10.1016/j.biopsych.2008.05.031.

Berridge, K.C. y Kringelbach, M.L. (2008). Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology, 199, 457-480.  doi:10.1007/s00213-008-1099-6.

Berridge, K.C. y Kringelbach, M.L. (2015). Pleasure systems in the brain. Neuron, 86, 646-664. doi:10.1016/j.neuron.2015.02.018.

Bossert J.M., Marchant N.J., Calu D.J. y Shaham Y. (2013). The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology, 229, 453-476.  doi:10.1007/s00213-013-3120-y.

Carlezon, W.A. y Thomas, M.J. (2009). Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology, 56, 122-132. doi:10.1016/j.neuropharm.2008.06.075.

Carnicella, S., Amamoto, R. y Ron, D. (2009). Excessive alcohol consumption is blocked by glial cell line–derived neurotrophic factor. Alcohol43, 35-43. doi:10.1016/j.alcohol.2008.12.001.

Colussi-Mas, J., Wise, R.J., Howard, A. y Schenk, S. (2010). Drug seeking in response to a priming injection of MDMA in rats: relationship to initial sensitivity to self-administered MDMA and dorsal striatal dopamine. The International Journal of Neuropsychopharmacology, 13, 1315-1327.  doi:10.1017/S1461145710000283.

Cruz, F.C., Marin, M.T. y Planeta, C.D.S. (2008). The reinstatement of amphetamine-induced place preference is long-lasting and related to decreased expression of AMPA receptors in the nucleus accumbens. Neuroscience, 151, 313-319. doi:10.1016/j.neuroscience.2007.10.019.

Dalley, J.W. y Everitt, B.J. (2009). Dopamine receptors in the learning, memory and drug reward circuitry. Seminars in Cell y Developmental Biology, 20, 403-410. doi:10.1016/j.semcdb.2009.01.002.

Daza-Losada, M., Do Couto, B.R., Manzanedo, C., Aguilar, M.A., Rodríguez-Arias, M., y Miñarro, J. (2007). Rewarding effects and reinstatement of MDMA-induced CPP in adolescent mice. Neuropsychopharmacology32, 1750-1759. doi:10.1038/sj.npp.1301309

Daza-Losada, M., Miñarro, J., Aguilar, M.A., Valverde, O. y Rodríguez-Arias, M. (2011). Acute blockade of CB1 receptor leads to reinstatement of MDMA-induced conditioned place preference. Pharmacology Biochemistry and Behavior100, 33-39. doi:10.1016/j.pbb.2011.07.011.

Daza-Losada, M., Rodríguez-Arias, M., Aguilar, M.A. y Miñarro, J. (2009). Acquisition and reinstatement of MDMA-induced conditioned place preference in mice pre-treated with MDMA or cocaine during adolescence. Addiction Biology, 14, 447-456. doi:10.1111/j.1369-1600.2009.00173.x.

Deroche-Gamonet, V. y Piazza, P.V. (2014). Psychobiology of cocaine addiction: Contribution of a multi-symptomatic animal model of loss of control. Neuropharmacology, 76, 437-449. doi:10.1016/j.neuropharm.2013.07.014.

Deroche-Gamonet, V., Belin, D. y Piazza, P.V. (2004). Evidence for addiction-like behavior in the rat. Science, 305, 1014-1017. doi:10.1126/science.1099020

Do Couto, B.R., Aguilar, M.A., Lluch, J., Rodríguez-Arias, M. y Miñarro, J. (2009). Social experiences affect reinstatement of cocaine-induced place preference in mice. Psychopharmacology207, 485-498. doi:10.1007/s00213-009-1678-1.

Do Couto, B.., Aguilar, M.A., Manzanedo, C., Rodríguez-Arias, M., Armario, A. y Minarro, J. (2006). Social stress is as effective as physical stress in reinstating morphine-induced place preference in mice. Psychopharmacology, 185, 459-470. doi:10.1007/s00213-006-0345-z.

Do Couto, B.R., Aguilar, M.A., Rodríguez-Arias, M. y Miñarro, J. (2005). Cross-reinstatement by cocaine and amphetamine of morphine-induced place preference in mice. Behavioural Pharmacology, 16, 253-259.

Do Couto, B.R., Rodríguez-Arias, M., Fuentes, S., Gagliano, H., Armario, A., Miñaro, J. y Aguilar, M.A. (2011). Adolescent pre-exposure to ethanol or MDMA prolongs the conditioned rewarding effects of MDMA. Physiology y Behavior103, 585-593. doi:10.1016/j.physbeh.2011.02.012.

Do Couto, B., Daza-Losada, M., Rodríguez-Arias, M., Nadal, R., Guerri, C., Summavielle, T.,... Aguilar, M.A. (2012). Adolescent pre-exposure to ethanol and 3, 4-methylenedioxymethylamphetamine (MDMA) increases conditioned rewarding effects of MDMA and drug-induced reinstatement. Addiction Biology17, 588-600. doi: 10.1111/j.1369-1600.2011.00382.x.

Edwards, S. y Koob, G.F. (2013). Escalation of drug self-administration as a hallmark of persistent addiction liability. Behavioural Pharmacology, 24, 356-362. doi: 10.1097/FBP.0b013e3283644d15.

Epstein, D.H., Preston, K.L., Stewart, J. y Shaham, Y. (2006). Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology, 189, 1-16. doi:10.1007/s00213-006-0529-6.

Everitt, B.J. y Robbins, T.W. (2000). Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology, 153, 17-30. doi:10.1007/s002130000566.

Everitt, B.J. y Robbins, T. W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neuroscience & Biobehavioral Reviews, 37, 1946-1954. doi:10.1016/j.neubiorev.2013.02.010.

Everitt, B.J. (2014). Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories--indications for novel treatments of addiction. European Journal of Neuroscience, 40, 2163-2182. doi:10.1111/ejn.12644.

Fuchs, R.A., Feltenstein, M.W. y See, R.E. (2006). The role of the basolateral amygdala in stimulus–reward memory and extinction memory consolidation and in subsequent conditioned cued reinstatement of cocaine seeking. European Journal of Neuroscience, 23, 2809-2813. doi:10.1111/j.1460-9568.2006.04806.x.

García-Carmona, J.A., Baroja-Mazo, A., Milanés, M.V. y Laorden, M.L. (2015). Sex Differences between CRF1 Receptor Deficient Mice following Naloxone-Precipitated Morphine Withdrawal in a Conditioned Place Aversion Paradigm: Implication of HPA Axis. PloSone10, e0121125. doi:10.1371/journal.pone.0121125.

García-Pardo, M.P., Blanco-Gandía, M.C., Valiente-Lluch, M., Rodríguez-Arias, M., Miñarro, J. y Aguilar, M.A. (2015b). Long-term effects of repeated social stress on the conditioned place preference induced by MDMA in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry63, 98-109. doi:10.1016/j.pnpbp.2015.06.006.

García-Pardo, M.P., Escobar-Valero, C., Rodríguez-Arias, M., Miñarro, J. y Aguilar, M.A. (2015a). Involvement of NMDA glutamate receptors in the acquisition and reinstatement of the conditioned place preference induced by MDMA. Behavioural Pharmacology26, 411-417. doi:10.1097/FBP.0000000000000138.

García-Pardo, M.P., Rodríguez-Arias, M., Maldonado, C., Manzanedo, C., Miñarro, J. y Aguilar, M.A. (2014). Effects of acute social stress on the conditioned place preference induced by MDMA in adolescent and adult mice. Behavioural Pharmacology25, 532-546. doi:10.1097/FBP.0000000000000065.

Ghitza U.E. (2015). Needed Relapse-Prevention Research on Novel Framework (ASPIRE Model) for Substance Use Disorders Treatment. Frontiers in Psychiatry, 6, 37. doi:10.3389/fpsyt.2015.00037.

Giuliano, C., Goodlett, C.R., Economidou, D., García-Pardo, M.P., Belin, D., Robbins, T.W.,... Everitt, B.J. (2015). The novel μ-opioid receptor antagonist gsk1521498 decreases both alcohol seeking and drinking: evidence from a new preclinical model of alcohol seeking. Neuropsychopharmacology, 40, 2981-2992. doi:10.1038/npp.2015.152.

Giuliano, C., Robbins, T.W., Nathan, P.J., Bullmore, E.T. y Everitt, B.J. (2012). Inhibition of opioid transmission at the μ-opioid receptor prevents both food seeking and binge-like eating. Neuropsychopharmacology37, 2643-2652. doi:10.1038/npp.2012.128.

Giuliano, C., Robbins, T.W., Wille, D.R., Bullmore, E.T. y Everitt, B.J. (2013). Attenuation of cocaine and heroin seeking by μ-opioid receptor antagonism. Psychopharmacology227, 137-147. doi:10.1007/s00213-012-2949-9.

Goldberg, S.R. y Gardner, M.L. (1981). Second-order schedules: extended sequences of behavior controlled by brief environmental stimuli associated with drug self-administration. NIDA Research Monographs, 37, 241-270.

Goldberg, S.R. y Tang, A.H. (1977). Behavior maintained under second-order schedules of intravenous morphine injection in squirrel and rhesus monkeys. Psychopharmacology, 51, 235-242.

Graf, E.N., Hoks, M.A., Baumgardner, J., Sierra, J., Vranjkovic, O., Bohr, C.,... Mantsch, J.R. (2011). Adrenal activity during repeated long-access cocaine self-administration is required for later CRF-induced and CRF-dependent stressor-induced reinstatement in rats. Neuropsychopharmacology, 36, 1444-1454. doi:10.1038/npp.2011.28.

Hellemans, K.G., Everitt, B.J. y Lee, J.L. (2006). Disrupting reconsolidation of conditioned withdrawal memories in the basolateral amygdala reduces suppression of heroin seeking in rats. The Journal of Neuroscience26, 12694-12699. doi:10.1523/JNEUROSCI.3101-06.2006.

Inda, M.C., Muravieva, E.V. y Alberini, C.M. (2011). Memory retrieval and the passage of time: from reconsolidation and strengthening to extinction. The Journal of Neuroscience31, 1635-1643. doi:10.1523/JNEUROSCI.4736-10.2011.

Koob, G.F., Arends, M.A. y Le Moal, M. (2014). Drugs, Addiction, and the Brain. Academic Press, NY.

Koob, G.F. y Volkow, N.D. (2016). Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry, 3, 760-773. doi:10.1016/S2215-0366(16)00104-8.

Lammel, S., Lim, B.K. y Malenka, R.C. (2014). Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology, 76, 351-359. doi:10.1016/j.neuropharm.2013.03.019.

Lee, B., Platt, D.M., Rowlett, J.K., Adewale, A.S. y Spealman, R.D. (2005). Attenuation of behavioral effects of cocaine by the metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)-pyridine in squirrel monkeys: comparison with dizocilpine. Journal of Pharmacology and Experimental Therapeutics312, 1232-1240. doi:10.1124/jpet.104.078733

Lee, J.L. (2010). Memory reconsolidation mediates the updating of hippocampal memory content. Frontiers in Behavioral Neuroscience4, 168. doi: 10.3389/fnbeh.2010.00168.

Lee, J.L., Milton, A.L. y Everitt, B.J. (2006). Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. The Journal of Neuroscience26, 5881-5887. doi:10.1523/JNEUROSCI.0323-06.2006

Lenoir, M., Cantin, L., Vanhille, N., Serre, F. y Ahmed, S.H. (2013). Extended heroin access increases heroin choices over a potent nondrug alternative. Neuropsychopharmacology, 38, 1209-1220. doi:10.1038/npp.2013.17.

Liu, X., Ma, L., Li, H.H., Huang, B., Li, Y.X., Tao, Y.Z. y Ma, L. (2015). β-Arrestin–biased signaling mediates memory reconsolidation. Proceedings of the National Academy of Sciences112, 4483-4488. doi:10.1073/pnas.1421758112.

Lu, L., Grimm, J.W., Dempsey, J. y Shaham, Y. (2004). Cocaine seeking over extended withdrawal periods in rats: different time courses of responding induced by cocaine cues versus cocaine priming over the first 6 months. Psychopharmacology, 176, 101-108. doi:10.1007/s00213-004-1860-4.

Lv, X. F., Sun, L.L., Cui, C.L. y Han, J.S. (2015). NAc shell Arc/Arg3. 1 protein mediates reconsolidation of morphine CPP by increased GluR1 cell surface expression: activation of ERK-coupled CREB is required. International Journal of Neuropsychopharmacology18, pyv030. doi:10.1093/ijnp/pyv030.

Maldonado C, Cauli O, Rodríguez-Arias M, Aguilar M.A. y Miñarro J. (2003). Memantine presents different effects from MK-801 in motivational and physical signs of morphine withdrawal. Behavioural Brain Research, 144, 25-35.

Manzanedo, C., Aguilar, M.A., Rodrı́guez-Arias, M. y Miñarro, J. (2001 b). Effects of dopamine antagonists with different receptor blockade profiles on morphine-induced place preference in male mice. Behavioural Brain Research, 121, 189-197.

Manzanedo, C., Aguilar, M.A., Rodrı́guez-Arias, M., Navarro, M. y Miñarro, J. (2004). 7-Nitroindazole blocks conditioned place preference but not hyperactivity induced by morphine. Behavioural Brain Research150, 73-82. doi:0.1016/S0166-4328(03)00225-0

Manzanedo, C., Serrano, A., Aguilar, M.A., Rodrı́guez-Arias, M. y Miñarro, J. (2001 a). Effects of CGS 10746B on hyperactivity and place preference induced by morphine. Behavioural Brain Rresearch126, 23-32.

Mead, A.N. (2014). Appropriate experimental approaches for predicting abuse potential and addictive qualities in preclinical drug discovery. Expert Opinion on Drug Discovery, 9, 1281-1291. doi:10.1517/17460441.2014.956077.

Miller, C.A. y Marshall, J.F. (2005). Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron47, 873-884. doi:10.1016/j.neuron.2005.08.006

Montagud-Romero, S., Aguilar, M.A., Maldonado, C., Manzanedo, C., Miñarro, J. y Rodríguez-Arias, M. (2015). Acute social defeat stress increases the conditioned rewarding effects of cocaine in adult but not in adolescent mice. Pharmacology Biochemistry and Behavior135, 1-12. doi:10.1016/j.pbb.2015.05.008.

Moser, P., Wolinsky, T., Duxon, M. y Porsolt, R.D. (2011). How good are current approaches to nonclinical evaluation of abuse and dependence? Journal of Pharmacology and Experimental Therapeutics, 336, 588-595. doi: 10.1124/jpet.110.169979.

Müller, C.P. y Homberg, J.R. (2015). The role of serotonin in drug use and addiction. Behavioural Brain Research, 277, 146-192. doi:10.1016/j.bbr.2014.04.007.

Navarrete, F., Rodríguez-Arias, M., Martín-García, E., Navarro, D., García-Gutiérrez, M. S., Aguilar, M.A.,... Manzanares, J. (2013). Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology, 38, 2515-2524. doi:10.1038/npp.2013.157.

Negus, S.S. y Miller, L.L. (2014). Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacological Reviews66, 869-917. doi:10.1124/pr.112.007419.

O’Connor, E.C., Chapman, K., Butler, P. y Mead, A.N. (2011). The predictive validity of the rat self-administration model for abuse liability. Neuroscience y Biobehavioral Reviews, 35, 912-938. doi:10.1016/j.neubiorev.2010.10.012.

Olds, J. y Milner, P. (1954). Positive reinforcement produced by Electrical stimulation of septal area and other regions of the rat brain. Journal of Comparative and Physiological Psychology, 47, 419-427.

Parker, L.A. y Mcdonald, R.V. (2000). Reinstatement of both a conditioned place preference and a conditioned place aversion with drug primes. Pharmacology Biochemistry and Behavior66, 559-561.

Pautassi, R.M., Miranda-Morales, R.S. y Nizhnikov, M. (2015). Operant self-administration of ethanol in infant rats. Physiology y Behavior, 148, 87-99. doi:10.1016/j.physbeh.2014.08.002.

Pavlov, I. (1927). Conditioned reflexes. London: Oxford University Press.

Piazza, P. V. y Deroche-Gamonet, V. (2013). A multistep general theory of transition to addiction. Psychopharmacology, 229, 387-413. doi:10.1007/s00213-013-3224-4.

Pulvirenti, L. (2003). Glutamate neurotransmission in the course of cocaine addiction. In: Herman BH, ed. Glutamate and Addiction, pp. 171–181. Totowa, NJ: Humana Press.

Rhodes, J. S., Best, K., Belknap, J.K., Finn, D.A. y Crabbe, J.C. (2005). Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiology y Behavior, 84, 53-63. doi:10.1016/j.physbeh.2004.10.007.

Richardson, N.R. y Roberts, D.C. (1996). Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. Journal of Neuroscience Methods, 66, 1-11.

Roberts, D.C., Morgan, D. y Liu, Y. (2007). How to make a rat addicted to cocaine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31, 1614-1624. doi:10.1016/j.pnpbp.2007.08.028.

Rodríguez-Arias, M., Castillo, A., Daza-Losada, M., Aguilar, M.A. y Miñarro, J. (2009). Effects of extended cocaine conditioning in the reinstatement of place preference. Physiology y Behavior96, 620-630. doi:10.1016/j.physbeh.2008.12.011.

Roger-Sánchez, C., A Aguilar, M., Manzanedo, C., Miñarro, J. y Rodríguez-Arias, M. (2013c). Neurochemical substrates of MDMA reward: effects of the inhibition of serotonin reuptake on the acquisition and reinstatement of MDMA-induced CPP. Current Pharmaceutical Design19, 7050-7064. doi:10.2174/138161281940131209143632.

Roger-Sánchez, C., Aguilar, M. A., Rodríguez-Arias, M., Aragon, C.M. y Miñarro, J. (2012). Age-and sex-related differences in the acquisition and reinstatement of ethanol CPP in mice. Neurotoxicology and Teratology34, 108-115. doi:10.1016/j.ntt.2011.07.011.

Roger-Sánchez, C., Rodríguez-Arias, M., Miñarro, J. y Aguilar, M.A. (2013a). Effects of risperidone on the acquisition and reinstatement of the conditioned place preference induced by MDMA. Brain Research Bulletin98, 36-43. doi:10.1016/j.brainresbull.2013.07.009.

Roger-Sánchez, C., Rodríguez-Arias, M., Miñarro, J. y Aguilar, M.A. (2013b). Involvement of 5-hydroxytryptamine 5-HT 3 serotonergic receptors in the acquisition and reinstatement of the conditioned place preference induced by MDMA. European Journal of Pharmacology714, 132-141. doi:10.1016/j.ejphar.2013.06.005.

Romero-Martínez, A. y Moya-Albiol, L. (2015). Neuropsychological impairments associated with the relation between cocaine abuse and violence: neurological facilitation mechanisms. Adicciones, 27, 64-74.

Sanchez, H., Quinn, J.J., Torregrossa, M.M. y Taylor, J.R. (2010). Reconsolidation of a cocaine-associated stimulus requires amygdalar protein kinase A. The Journal of Neuroscience30, 4401-4407. doi:10.1523/JNEUROSCI.3149-09.2010.

Schenk, S. (2009). MDMA self-administration in laboratory animals: a summary of the literature and proposal for future research. Neuropsychobiology, 60, 130-136. doi: 10.1159/000253549.

Schenk, S., Gittings, D. y Colussi-Mas, J. (2011). Dopaminergic mechanisms of reinstatement of MDMA-seeking behaviour in rats. British Journal of Pharmacology, 162, 1770-1780. doi:10.1111/j.1476-5381.2010.01193.x.

Schenk, S., Hely, L., Gittings, D., Lake, B. y Daniela, E. (2008). Effects of priming injections of MDMA and cocaine on reinstatement of MDMA-and cocaine-seeking in rats. Drug and Alcohol Dependence, 96, 249-255. doi:10.1016/j.drugalcdep.2008.03.014.

Shaham, Y., Shalev, U., Lu, L., de Wit, H. y Stewart, J. (2003). The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology168, 3-20. doi:10.1007/s00213-002-1224-x

Shalev, U., Grimm, J.W. y Shaham, Y. (2002). Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacological Reviews54, 1-42.

Sinha, R., Fox, H. C., Hong, K.I.A., Hansen, J., Tuit, K. y Kreek, M.J. (2011). Effects of adrenal sensitivity, stress-and cue-induced craving, and anxiety on subsequent alcohol relapse and treatment outcomes.  Archives of General Psychiatry, 68, 942-952. doi:10.1001/archgenpsychiatry.2011.49.

Skinner, B.F. (1938). The behavior of organisms: an experimental analysis. Appleton-Century, Oxford, England.

Slaker, M., Churchill, L., Todd, R.P., Blacktop, J.M., Zuloaga, D.G., Raber, J.,... Sorg, B. A. (2015). Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. The Journal of Neuroscience, 35, 4190-4202. doi:10.1523/JNEUROSCI.3592-14.2015.

Sorg, B.A. (2012). Reconsolidation of drug memories. Neuroscience y Biobehavioral Reviews36, 1400-1417. doi:0.1016/j.neubiorev.2012.02.004.

Soria, G., Barbano, M.F., Maldonado, R. y Valverde, O. (2008). A reliable method to study cue-, priming-, and stress-induced reinstatement of cocaine self-administration in mice. Psychopharmacology, 199, 593-603. doi:10.1007/s00213-008-1184-x.

Soria, G., Mendizábal, V., Touriño, C., Robledo, P., Ledent, C., Parmentier, M.,... Valverde, O. (2005). Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology, 30, 1670-1680. doi:10.1038/sj.npp.1300707.

Spear, D.J. y Katz, J.L. (1991). Cocaine and food as reinforcers: Effects of reinforce magnitude and response requirement under second-order fixed-ratio and progressive-ratio schedules. Journal of the Experimental Analysis of Behavior, 56, 261-275.

Steketee, J.D. y Kalivas, P.W. (2011). Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacological Reviews, 63, 348-365. doi:10.1124/pr.109.001933.

Stewart, J. (2000). Pathways to relapse: the neurobiology of drug-and stress-induced relapse to drug-taking. Journal of Psychiatry and Neuroscience, 25, 125-136.

Taylor, J.R., Olausson, P., Quinn, J.J. y Torregrossa, M.M. (2009). Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology56, 186-195. doi:10.1016/j.neuropharm.2008.07.027.

Teruel, A.F. (2008). Farmacología de la conducta (Vol. 37). Universidad Autònoma de Barcelona.

Thiele, T.E. y Navarro, M. (2014). “Drinking in the dark” (DID) procedures: A model of binge-like ethanol drinking in non-dependent mice. Alcohol48, 235-241. doi:10.1016/j.alcohol.2013.08.005.

Thorndike, E.L. (1932). Reward and punishment in animal learning. Comparative Psychology Monographs, 8, 39.

Trigo, J.M., Orejarena, M.J., Maldonado, R. y Robledo, P. (2009). MDMA reinstates cocaine-seeking behaviour in mice. European Neuropsychopharmacology, 19, 391-397. doi:10.1016/j.euroneuro.2008.12.010.

Trigo, J.M., Panayi, F., Soria, G., Maldonado, R. y Robledo, P. (2006). A reliable model of intravenous MDMA self-administration in naive mice. Psychopharmacology, 184, 212-220. doi:0.1007/s00213-005-0229-7.

Tzschentke TM. (2007). Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addiction Biology, 12, 227-462. doi:10.1111/j.1369-1600.2007.00070.x.

Tzschentke, T.M. (1998). Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Progress in Neurobiology56, 613-672.

Vidal-Infer, A., Roger-Sánchez, C., Daza-Losada, M., Aguilar, M.A., Miñarro, J. y Rodríguez-Arias, M. (2012). Role of the dopaminergic system in the acquisition, expression and reinstatement of MDMA-induced conditioned place preference in adolescent mice. Plos One7, e43107. doi:10.1371/journal.pone.0043107.

Volkow, N.D., Koob, G.F. y McLellan, A.T. (2016). Neurobiologic advances from the brain disease model of addiction. New England Journal of Medicine, 374, 363-371. doi:10.1056/NEJMra1511480.

Wang, B., Luo, F., Ge, X. C., Fu, A.H. y Han, J.S. (2002). Effects of lesions of various brain areas on drug priming or footshock-induced reactivation of extinguished conditioned place preference. Brain Research950, 1-9.

Wang, B., Luo, F., Zhang, W.T. y Han, J.S. (2000). Stress or drug priming induces reinstatement of extinguished conditioned place preference. NeuroReport11, 2781-2784.

Wise, R.A. (2008). Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotoxicity Research, 14, 169-183. doi:10.1007/BF03033808.

Yahyavi-Firouz-Abadi, N. y See, R.E. (2009). Anti-relapse medications: preclinical models for drug addiction treatment. Pharmacology y Therapeutics, 124, 235-247. doi:10.1016/j.pharmthera.2009.06.014.

Yan, W.S., Li, Y.H., Xiao, L., Zhu, N., Bechara, A. y Sui, N. (2014). Working memory and affective decision-making in addiction: a neurocognitive comparison between heroin addicts, pathological gamblers and healthy controls. Drug and Alcohol Dependence134, 194-200. doi:10.1016/j.drugalcdep.2013.09.027.

Yan, Y. y Nabeshima, T. (2009). Mouse model of relapse to the abuse of drugs: procedural considerations and characterizations. Behavioural Brain Research, 196, 1-10. doi: 10.1016/j.bbr.2008.08.017.

Yan, Y., Kong, H., Wu, E.J., Newman, A.H. y Xu, M. (2013). Dopamine D3 receptors regulate reconsolidation of cocaine memory. Neuroscience241, 32-40. doi:10.1016/j.neuroscience.2013.03.005.




DOI: https://doi.org/10.20882/adicciones.862